
Light Weight
Directory Access
Protocol (LDAP)

By,
Yadhu Krishna M
Sayooj B Kumar

What is LDAP?

● Lightweight Directory Access Protocol

● Used for accessing & maintaining distributed directory information services

○ Used for authentication

○ Storing information about users, groups, and applications

○ General purpose data storage

● Based on the X.500 directory-information services

● Used to store and retrieve data from a hierarchical directory structure.

● Open Protocol.

What is a directory service?

● Store, organize and present data in a key-value type format

● Optimized for lookups, searches, and read operations over write operations.

What LDAP is NOT

● LDAP is not a server / database

● LDAP is not a network service / device

● LDAP is not an authentication procedure

● LDAP is not a user/password repository

● LDAP is not a specific open or closed source product

● LDAP IS A PROTOCOL.

Basic Data Components

1. Attributes

2. Entries

3. Data Information Trees - DIT

Refer: https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol#Schema

https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol#Schema

Attributes

● Data is stored in elements called attributes

● Attributes are basically key-value pairs.

● Keys have predefined names which are dictated by the objectClasses.

● Other elements within LDAP are used for structure, organization, etc.

● Example: mail=example.com

Entries

● Collection of attributes under a name used to describe something.

● Similar to a row in a relational database system.

● LDAP Data Interchange Format (LDIF)

dn: sn=Ellingwood,ou=people,dc=digitalocean,dc=com
objectclass: person
sn: Ellingwood
cn: Justin Ellingwood

DIT- Data Information Trees

DIT represents an organizational structure.

dn: sn=Ellingwood,ou=people,dc=digitalocean,dc=com
objectclass: person
sn: Ellingwood
cn: Justin Ellingwood

DN -> Distinguished Name (used to identify entry)
CN -> Common Name
SN -> Surname

Defining LDAP Data
Components

Attribute Definitions

Strictly according to RFC 4512.

1. Numeric OID.

2. Optional human-readable description.

3. Optional reference to a superior attribute type.

4. Optional reference to the equality matching rule

5. Optional reference to the ordering matching rule.

6. Optional reference to the substring matching rule.

7. Optional string “SINGLE-VALUE”,

8. Optional string “NO-USER-MODIFICATION”

…And much more

https://ldap.com/attribute-types/

https://ldap.com/attribute-types/

Example for Attr. Definition

attributetype (
2.5.4.41 NAME 'name'
DESC 'RFC4519: common supertype of name attribute'

 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{32768}
)

Ln 1: Unique Object ID & Name
Ln 2: Description
Ln 3: How to compare equality.
Ln 4: Defines how substring should be checked.
Ln 5:

ObjectClass Definitions

● Attributes are collected within entities called objectClasses.

● Eg. “person” is an objectClass.

dn: sn=Ellingwood,ou=people,dc=digitalocean,dc=com
objectclass: person
sn: Ellingwood
cn: Justin Ellingwood

Schemas

● Collections of related objectClasses and attributes.
● ObjectClass definitions and attribute definitions grouped together.

Data Organization

Placing Entries within the DIT

Associated with Domain : (dc=example,dc=com)

Associated with Location : (l=new_york,c=us)

Associated with Organization : (ou=marketing,o=Example_Co)

Protocol Variations

● ldap://
○ basic LDAP protocol
○ structured access to a directory service

● ldaps://
○ indicate LDAP over SSL/TLS
○ Deprecated

● ldapi://
○ LDAP over an IPC. (Inter-Process Communication)
○ Secure

Basic Operations

On LDAP

Add Operation

Search Operation

Other Operations

● compare(dn, attribute, value, controls, callback)

● del(dn, controls, callback)

● modify(name, changes, controls, callback)

● modifyDN(dn, newDN, controls, callback)

● unbind(callback)

LDAP Injection

 LDAP INJECTION

● Something similar like sql injection
● Unlike sql we don’t have many ways or functions to exploit
● Injections are mainly found in ldap search
● Similar to sql blind based we have ldap blind based injection

Why injection happens?

● unsanitized input

Prevention

● Sanitize input
● * () . & - _ [] ` ~ | @ $ % ^ ? : { } ! '

INJECTION

● * (something similar like % in mysql)

● a* (means there are one or more character after a)
● *abc* (means there are character before and after “abc”)
● * is mainly use in blind based injection
● We can also use < > <= >= in certain situations

● Other useful operation is (AND “&”, OR “|” and NOT “!”)

● Just a “*” can work similar to ‘ or 1-- - in sql
● Ie it output all data similar to how all row is returned in sql
● We can also add more attributes but make sure parenthesis are

balanced

Example

● Let out query be something like this
● (&(cn = ’test’)(mail= {our input}))

● If {our input}=test@gmail.com)(userPassword=a*
● Resulting query will be
● (&(cn = ’test’)(mail= test@gmail.com)(userPassword=a*))
● From here we can bruteforce for password

mailto:test@gmail.com
mailto:test@gmail.com

Let’s play around

https://github.com/sayoojbkumar/ldap_injection

Aim: find out anyone of user mail login with the mail
capture the flag

https://github.com/sayoojbkumar/ldap_injection

Reference
● https://ldap.com/attribute-types/
● https://www.blackhat.com/presentations/bh-europe-08/Alonso-Parada/Whitepaper/bh-

eu-08-alonso-parada-WP.pdf

● https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol#Schema
●

https://ldap.com/attribute-types/
https://www.blackhat.com/presentations/bh-europe-08/Alonso-Parada/Whitepaper/bh-eu-08-alonso-parada-WP.pdf
https://www.blackhat.com/presentations/bh-europe-08/Alonso-Parada/Whitepaper/bh-eu-08-alonso-parada-WP.pdf
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol#Schema

Thank You !

